

Figure 1: me, searching for the best students out there.

Advisor: Peter Waldert

Area: Simulations, Numerical Analysis, Visual Analytics

Contact: peter.waldert@tugraz.at

Primal-Dual Approaches for MR-CDI

Bachelor's Thesis Seminar Project

Master's Thesis

- Applying Suitable Optimisation Algorithms to a Primal-Dual Formulation of the Magnetic Resonance (MR) Current Density Imaging (CDI) problem.
- Idea and relevance of CDI: reconstructing conductivity ρ (a material constant) from a measurement for usage in clinical environments.
- The goal is to find the current density j (hence the name Current Density Imaging) and ρ from 'inverting' the Biot-Savart law,

$$oldsymbol{B}(oldsymbol{x}) = rac{\mu_0}{4\pi} \int_{\Omega} rac{oldsymbol{j}(oldsymbol{y}) imes (oldsymbol{x} - oldsymbol{y})}{\|oldsymbol{x} - oldsymbol{y}\|^3} \, \mathrm{d}oldsymbol{y} \, .$$

• Goal: is reconstruction of the magnetic field \boldsymbol{B} and conductivity ρ possible, or more efficient using a Primal-Dual formulation?

